Skip to content

Basic general pomset theory #100

@eupp

Description

@eupp
  • Define pomset L structure --- labeled partial order with L being the label set. That is a partial order over carrier Tplus labeling function lab : T -> L

  • Make subclass of Elem.eventStruct --- elementary event structure, which is a pomset plus axiom of finite cause (move it to prime_eventstruct.v.

  • Define homomorphism of pomsets.

  • Define isomorphism of pomsets.

  • Make subclass of finitely supported pomset.
    {fsfun lab with dfl -> \bot} where \bot : L is distinguished label (use inhType ?).
    Require that forall e1, e2 \in supp lab. e1 < e2 is false (i.e. strict causality is false outside the finite support).

  • Define pomset languages.
    There are two ways:
    (1) using quotient types
    (2) as Prop-predicate invariant under isomorphisms: P : lposet E L -> Prop s.t. forall p q, p ~= q -> P p -> P q.

  • Define embedding relation of pomset languages. Prove trivial properties (preorder).

  • Define ordinary word language corresponding to pomset.
    This should work only for finite pomsets? The type should be lang: fslposet E L -> seq L -> bool ?.
    Prove embedding lemma: (p ~> q) -> lang q ≦ lang p

Metadata

Metadata

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions