Skip to content

Commit 5628cf1

Browse files
committed
blueprint: add koszul props
1 parent ae148fb commit 5628cf1

File tree

1 file changed

+21
-6
lines changed

1 file changed

+21
-6
lines changed

blueprint/src/koszul.tex

Lines changed: 21 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -35,15 +35,30 @@ \subsection{Koszul complex}
3535
It's indeed a complex as $d_a^2 = 0$.
3636
\end{definition}
3737

38-
\begin{definition}[Dual Koszul complex]
38+
\begin{definition}[Dual Koszul Complex]
3939
\label{def:DualKoszulComplex}
40-
% \leanok
40+
\leanok
41+
The chain complex dual to koszul complex via the functor $\operatorname{Hom}(-,R)$ .
4142
\uses{def:KoszulComplex}
43+
\end{definition}
44+
45+
\begin{proposition}[Koszul Complex is Self-Dual]
46+
\label{prop:free_koszul_is_iso_to_dual}
47+
\uses{def:DualKoszulComplex}
4248
If $M \cong R^m$ is a free $R$-module, then applying the contravariant functor $\operatorname{Hom}_R(\ , R)$ gives us an isomorphic chain complex
4349
$$K_{\bullet}(a) :\begin{tikzcd}
4450
\bigwedge^{i+1}_R R^m \arrow[r, "d_{i+1}"] & \bigwedge^i_R R^m \arrow[r, "d_i"] & \bigwedge^{i-1}_R R^m \arrow[r] & \dots R^m \arrow[r, "d_1"] & R \arrow[r] & 0
4551
\end{tikzcd}$$
46-
\end{definition}
52+
\end{proposition}
53+
54+
\begin{proposition}[Differential of DualKoszul]
55+
\label{prop:diff_of_dual_koszul}
56+
\uses{def:DualKoszulComplex}
57+
%If $M \cong R^m$ is a free $R$-module, then applying the contravariant functor $\operatorname{Hom}_R(\ , R)$ gives us an isomorphic chain complex
58+
Taking $\{e_1, \dots, e_m\}$ as the standard basis of $R^m$, we may write the differential of DualKoszul $K(a_1, \dots, a_m)$ as:
59+
$$\bigwedge^{i+1}_R R^m \to \bigwedge^i_R R^m: \wedge \dots \wedge e_{j_{i+1}} \mapsto \sum_{k=1}^{i+1} (-1)^{i+k} a_{j_k} e_{j_{1}} \wedge \dots \wedge \widehat{e_{j_k}} \wedge \dots \wedge e_{j_{i+1}}$$
60+
Where $\widehat{e_{j_k}}$ means the $j_k$-th term is removed, so that the image is in $\bigwedge^{i} R^m$.
61+
\end{proposition}
4762

4863
\begin{definition}
4964
\label{def:complex_tensor_product}
@@ -54,7 +69,7 @@ \subsection{Koszul complex}
5469

5570
\begin{lemma}
5671
\label{lem:koszul_of_length_2}
57-
\uses{def:DualKoszulComplex}
72+
\uses{prop:diff_of_dual_koszul}
5873
$K(x)$ is exact exept for the rightmost side iff $x$ is regular.
5974
\end{lemma}
6075

@@ -115,7 +130,7 @@ \subsection{Koszul complex}
115130
\end{theorem}
116131

117132
\begin{lemma}
118-
\label{lem:reg_in_jrad_iff_koszul_exact}
133+
\label{lem:reg_in_jrad_iff_koszul_exact_at_one}
119134
\uses{thm:reg_seq_implies_koszul_exact, lem:nakayama, def:reg_seq}
120135
If $M$ is a finitely generated $R$-module and $a = (a_1, \dots, a_n)$ be a sequence in the Jacobson radical $J$ of $R$.
121136
If $H_1(K(a) \otimes M) = 0$, then $a$ is $M$-regular.
@@ -200,7 +215,7 @@ \subsection{Koszul complex}
200215

201216
\begin{corollary}
202217
\label{cor:koszul_min_resl_residue_iff_reg}
203-
\uses{lem:tor_measures_koszul_homology, cor:reg_in_jrad_iff_koszul_exact, prop:loc_resl_min_iff_basis_to_gen}
218+
\uses{lem:tor_measures_koszul_homology, lem:reg_in_jrad_iff_koszul_exact_at_one, prop:loc_resl_min_iff_basis_to_gen}
204219
If $a_1, \dots, a_n$ is a regular sequence in $(R, \mathfrak{m})$, then the Koszul complex $K(a_1, \dots, a_n)$ is a minimal free resolution of $k = R/(a_1, \dots, a_n)$.
205220
\end{corollary}
206221

0 commit comments

Comments
 (0)