|
| 1 | + |
| 2 | +\subsection{Exterior powers} |
| 3 | + |
| 4 | +\begin{theorem} |
| 5 | + \label{thm:exterior_power_univ_property} |
| 6 | +\end{theorem} |
| 7 | + |
| 8 | +\begin{lemma} |
| 9 | + \label{lem:alternating_multilinear_is_skew_symmetric} |
| 10 | + Should be AlternatingMap.map\_perm in mathlib |
| 11 | +\end{lemma} |
| 12 | + |
| 13 | +\begin{corollary} |
| 14 | + \label{cor:skew_symmetric_iff} |
| 15 | + \uses{lem:alternating_multilinear_is_skew_symmetric} |
| 16 | + Corollary 2.9 |
| 17 | +\end{corollary} |
| 18 | + |
| 19 | +\begin{lemma} |
| 20 | + \label{lem:spans_exterior_power} |
| 21 | + The set $\{e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d\}$ spans $\bigwedge^k M$. |
| 22 | +\end{lemma} |
| 23 | + |
| 24 | +\begin{proof} |
| 25 | + |
| 26 | +\end{proof} |
| 27 | + |
| 28 | +\begin{lemma} |
| 29 | + \label{lem:multilinear_to_tensor_is_alternating} |
| 30 | + \uses{cor:skew_symmetric_iff} |
| 31 | + For $k \geq 1$, the function $M^k \to M^{\otimes k}$ given by |
| 32 | + \[(m_1, \dots, m_k) \mapsto \sum_{\sigma \in S_k}^{} (\operatorname{sign} \sigma) m_{\sigma(1)} \otimes \dots \otimes m_{\sigma(k)} \] |
| 33 | + is multilinear and alterating. |
| 34 | +\end{lemma} |
| 35 | + |
| 36 | +\begin{lemma} |
| 37 | + \label{lem:hom_exterior_power_to_tensor_inj} |
| 38 | + \uses{lem:multilinear_to_tensor_is_alternating, thm:exterior_power_univ_property} |
| 39 | + $\bigwedge^k M \to M^{\otimes k}$ has trivial kernel. |
| 40 | +\end{lemma} |
| 41 | + |
| 42 | +\begin{proof} |
| 43 | + |
| 44 | +\end{proof} |
| 45 | + |
| 46 | +\begin{lemma} |
| 47 | + \label{lem:lin_indep_exterior_power} |
| 48 | + \uses{lem:hom_exterior_power_to_tensor_inj} |
| 49 | + The set $\{e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d\}$ is linearly independent in $\bigwedge^k M$. |
| 50 | +\end{lemma} |
| 51 | + |
| 52 | +\begin{theorem} |
| 53 | + \label{thm:exterior_power_basis_if_finite_free_module} |
| 54 | + \uses{lem:spans_exterior_power, lem:lin_indep_exterior_power} |
| 55 | + If $M$ is a finite free module of rank $d$ and $k \leq d$ then $\bigwedge^k M$ is free of rank $\binom{d}{k}$: for a basis $e_1, \dots, e_d$ of $M$, the $\binom{d}{k}$ elementary wedge products |
| 56 | + \[ |
| 57 | + e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d |
| 58 | + \] |
| 59 | + are a basis of $\bigwedge^k M$. |
| 60 | +\end{theorem} |
0 commit comments