Skip to content

Commit 77fd22e

Browse files
committed
updated blueprint
1 parent 05ff1b5 commit 77fd22e

File tree

2 files changed

+62
-0
lines changed

2 files changed

+62
-0
lines changed

blueprint/src/content.tex

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,3 +5,5 @@ \section{Auslander-Buchsbaum-Serre Theorem}
55
\input{abs.tex}
66

77
\input{koszul.tex}
8+
9+
\input{exterior.tex}

blueprint/src/exterior.tex

Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
2+
\subsection{Exterior powers}
3+
4+
\begin{theorem}
5+
\label{thm:exterior_power_univ_property}
6+
\end{theorem}
7+
8+
\begin{lemma}
9+
\label{lem:alternating_multilinear_is_skew_symmetric}
10+
Should be AlternatingMap.map\_perm in mathlib
11+
\end{lemma}
12+
13+
\begin{corollary}
14+
\label{cor:skew_symmetric_iff}
15+
\uses{lem:alternating_multilinear_is_skew_symmetric}
16+
Corollary 2.9
17+
\end{corollary}
18+
19+
\begin{lemma}
20+
\label{lem:spans_exterior_power}
21+
The set $\{e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d\}$ spans $\bigwedge^k M$.
22+
\end{lemma}
23+
24+
\begin{proof}
25+
26+
\end{proof}
27+
28+
\begin{lemma}
29+
\label{lem:multilinear_to_tensor_is_alternating}
30+
\uses{cor:skew_symmetric_iff}
31+
For $k \geq 1$, the function $M^k \to M^{\otimes k}$ given by
32+
\[(m_1, \dots, m_k) \mapsto \sum_{\sigma \in S_k}^{} (\operatorname{sign} \sigma) m_{\sigma(1)} \otimes \dots \otimes m_{\sigma(k)} \]
33+
is multilinear and alterating.
34+
\end{lemma}
35+
36+
\begin{lemma}
37+
\label{lem:hom_exterior_power_to_tensor_inj}
38+
\uses{lem:multilinear_to_tensor_is_alternating, thm:exterior_power_univ_property}
39+
$\bigwedge^k M \to M^{\otimes k}$ has trivial kernel.
40+
\end{lemma}
41+
42+
\begin{proof}
43+
44+
\end{proof}
45+
46+
\begin{lemma}
47+
\label{lem:lin_indep_exterior_power}
48+
\uses{lem:hom_exterior_power_to_tensor_inj}
49+
The set $\{e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d\}$ is linearly independent in $\bigwedge^k M$.
50+
\end{lemma}
51+
52+
\begin{theorem}
53+
\label{thm:exterior_power_basis_if_finite_free_module}
54+
\uses{lem:spans_exterior_power, lem:lin_indep_exterior_power}
55+
If $M$ is a finite free module of rank $d$ and $k \leq d$ then $\bigwedge^k M$ is free of rank $\binom{d}{k}$: for a basis $e_1, \dots, e_d$ of $M$, the $\binom{d}{k}$ elementary wedge products
56+
\[
57+
e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leq i_1 < \dots i_k \leq d
58+
\]
59+
are a basis of $\bigwedge^k M$.
60+
\end{theorem}

0 commit comments

Comments
 (0)