Skip to content

Commit 7a7807c

Browse files
committed
chore: add Barkhausen Noise article and Andrea Maiani
1 parent b8ddcef commit 7a7807c

File tree

3 files changed

+42
-1
lines changed

3 files changed

+42
-1
lines changed

src/app/home/home.component.html

Lines changed: 42 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ <h5 class="mt-0 text-center">Spafe: Simplified Python Audio Features Extraction<
110110
<div class="offset-2 col-10">
111111
<div class="d-flex">
112112
<div class="col-3 text-center align-self-center mr-3">
113-
<img src="assets/images/uncovering-synthetic.png" alt="Uncovering the Secrets of Synthetic Audio Detection" height="350" />
113+
<img src="assets/images/uncovering-synthetic.png" alt="A Machine Learning approach to Barkhausen Noise Analysis" height="350" />
114114
</div>
115115
<div class="media-body">
116116
<h5 class="mt-0 text-center">Uncovering the Secrets of Synthetic Audio Detection</h5>
@@ -213,6 +213,40 @@ <h5 class="mt-0 text-center">
213213

214214
<hr class="mt-5 mb-5" />
215215

216+
<div class="col-11">
217+
<div class="d-flex">
218+
<div class="col-5 text-center align-self-center mr-3">
219+
<img src="assets/images/barkhausen-pipeline.png" alt="A Machine Learning approach to Barkhausen Noise Analysis" height="100" />
220+
</div>
221+
<div class="media-body">
222+
<h5 class="mt-0 text-center">A Machine Learning approach to Barkhausen Noise Analysis</h5>
223+
<p class="text-center"><small>Stefano Borzi, Andrea Maiani, Dario Allegra</small></p>
224+
<p>
225+
<i-bs name="file-earmark-pdf-fill" width="30" height="30" style="color: red"> </i-bs>
226+
-
227+
<a href="#">coming soon</a>
228+
</p>
229+
<p>
230+
<i-bs name="github" width="30" height="30" style="color: black"> </i-bs>
231+
-
232+
<a href="https://github.com/UNICT-Fake-Audio/Barkhausen-noise-simulator/" target="_blank">GitHub</a>
233+
</p>
234+
<span><strong>Abstract:</strong></span>
235+
<p>
236+
In this work, we introduce a new synthetic dataset of Barkhausen noise signals generated using the
237+
Alessandro-Bertotti-Barkhausen-Magni (ABBM) model, a well-established approach for simulating crackling noise dynamics in
238+
magnetic materials. By varying key model parameters such as damping coefficient, spring constant, and noise amplitude, we
239+
generated 20000 audio samples. To facilitate parameter identification, we extracted handcrafted audio features and applied
240+
various machine learning classifiers. Our experiments demonstrated high classification performance, achieving per-class an
241+
accuracy of 99.816\% using the HistGradientBoostingClassifier (HGBC). This result highlight the potential of leveraging
242+
synthetic datasets and audio features for reverse-engineering Barkhausen noise generation parameters.
243+
</p>
244+
</div>
245+
</div>
246+
</div>
247+
248+
<hr class="mt-5 mb-5" />
249+
216250
<div class="col-6 offset-3 mb-4">
217251
<h2 class="text-center">People</h2>
218252
</div>
@@ -267,6 +301,13 @@ <h2 class="text-center">People</h2>
267301
class="col-4 text-center mt-5"
268302
linkedin="https://www.linkedin.com/in/lorenzo-mongelli-862783287/"
269303
></app-author>
304+
<app-author
305+
fullName="Andrea Maiani"
306+
profile="Collaborator"
307+
pictureUrl="assets/images/authors/AndreaMaiani.jpeg"
308+
class="col-4 text-center mt-5"
309+
scholar="https://scholar.google.it/citations?user=DcMhFnYAAAAJ&hl=it&oi=ao"
310+
></app-author>
270311
</div>
271312
<hr class="mt-5 mb-5" />
272313

15.9 KB
Loading
68.1 KB
Loading

0 commit comments

Comments
 (0)