@@ -110,7 +110,7 @@ <h5 class="mt-0 text-center">Spafe: Simplified Python Audio Features Extraction<
110110 < div class ="offset-2 col-10 ">
111111 < div class ="d-flex ">
112112 < div class ="col-3 text-center align-self-center mr-3 ">
113- < img src ="assets/images/uncovering-synthetic.png " alt ="Uncovering the Secrets of Synthetic Audio Detection " height ="350 " />
113+ < img src ="assets/images/uncovering-synthetic.png " alt ="A Machine Learning approach to Barkhausen Noise Analysis " height ="350 " />
114114 </ div >
115115 < div class ="media-body ">
116116 < h5 class ="mt-0 text-center "> Uncovering the Secrets of Synthetic Audio Detection</ h5 >
@@ -213,6 +213,40 @@ <h5 class="mt-0 text-center">
213213
214214 < hr class ="mt-5 mb-5 " />
215215
216+ < div class ="col-11 ">
217+ < div class ="d-flex ">
218+ < div class ="col-5 text-center align-self-center mr-3 ">
219+ < img src ="assets/images/barkhausen-pipeline.png " alt ="A Machine Learning approach to Barkhausen Noise Analysis " height ="100 " />
220+ </ div >
221+ < div class ="media-body ">
222+ < h5 class ="mt-0 text-center "> A Machine Learning approach to Barkhausen Noise Analysis</ h5 >
223+ < p class ="text-center "> < small > Stefano Borzi, Andrea Maiani, Dario Allegra</ small > </ p >
224+ < p >
225+ < i-bs name ="file-earmark-pdf-fill " width ="30 " height ="30 " style ="color: red "> </ i-bs >
226+ -
227+ < a href ="# "> coming soon</ a >
228+ </ p >
229+ < p >
230+ < i-bs name ="github " width ="30 " height ="30 " style ="color: black "> </ i-bs >
231+ -
232+ < a href ="https://github.com/UNICT-Fake-Audio/Barkhausen-noise-simulator/ " target ="_blank "> GitHub</ a >
233+ </ p >
234+ < span > < strong > Abstract:</ strong > </ span >
235+ < p >
236+ In this work, we introduce a new synthetic dataset of Barkhausen noise signals generated using the
237+ Alessandro-Bertotti-Barkhausen-Magni (ABBM) model, a well-established approach for simulating crackling noise dynamics in
238+ magnetic materials. By varying key model parameters such as damping coefficient, spring constant, and noise amplitude, we
239+ generated 20000 audio samples. To facilitate parameter identification, we extracted handcrafted audio features and applied
240+ various machine learning classifiers. Our experiments demonstrated high classification performance, achieving per-class an
241+ accuracy of 99.816\% using the HistGradientBoostingClassifier (HGBC). This result highlight the potential of leveraging
242+ synthetic datasets and audio features for reverse-engineering Barkhausen noise generation parameters.
243+ </ p >
244+ </ div >
245+ </ div >
246+ </ div >
247+
248+ < hr class ="mt-5 mb-5 " />
249+
216250 < div class ="col-6 offset-3 mb-4 ">
217251 < h2 class ="text-center "> People</ h2 >
218252 </ div >
@@ -267,6 +301,13 @@ <h2 class="text-center">People</h2>
267301 class ="col-4 text-center mt-5 "
268302 linkedin ="https://www.linkedin.com/in/lorenzo-mongelli-862783287/ "
269303 > </ app-author >
304+ < app-author
305+ fullName ="Andrea Maiani "
306+ profile ="Collaborator "
307+ pictureUrl ="assets/images/authors/AndreaMaiani.jpeg "
308+ class ="col-4 text-center mt-5 "
309+ scholar ="https://scholar.google.it/citations?user=DcMhFnYAAAAJ&hl=it&oi=ao "
310+ > </ app-author >
270311 </ div >
271312 < hr class ="mt-5 mb-5 " />
272313
0 commit comments