Skip to content

gabrielSantosLima/vlm_garbage_classification

Repository files navigation

Using VLMs for Garbage Classification

Comparing the usage of Visual Language Models (VLM) and Convolutional Neural Network to classify garbage images of the dataset "Garbage Image Dataset" by Farzad Nekouei.

Tested models:

Model Name Params Accuracy Precision Recall F1-Score
EfficientNetV2B2 8M 90.51% 92.11% 88.18% 89.62%
SmolVLM-1.7B (Zero-Shot Prompting) 1.7B 79.05% 68.57% 69.19% 68.62%
SmolVLM-500M (Zero-Shot Prompting) 500M 62.85% 62.25% 54.98% 55.32%
SmolVLM-1.7B (Few-Shot Prompting) 1.7B 54.55% 62.68% 50.68% 48.70%
SmolVLM-500M (Few-Shot Prompting) 500M 53.36% 51.34% 50.73% 45.13%
SmolVLM-256M (Zero-Shot Prompting) 256M 50.20% 48.91% 43.58% 44.38%
SmolVLM-256M (Few-Shot Prompting) 256M 50.20% 52.75% 46.30% 43.60%

Requirements

  • conda==25.3.1
  • python==3.10
  • tensorflow
  • keras
  • pandas
  • numpy
  • matplotlib
  • seaborn
  • jupyterlab
  • opencv-python
  • scikit-learn
  • pytorch
  • transfomers

See the complete configuration in environment.win.yml