BugZooka is a tool for log analysis and categorization based on static rules and LLM integrations. The LLM prompt is configured in prompt.json, with default and error summarization prompts in prompts.py. Chat interactions and sessions are not retained. Gen AI Notice: users of this tool should not enter any personal information as LLM prompt input and always review generated responses for accuracy and relevance prior to using the information.
- Python 3.11 or higher
- pip (Python package manager)
git clone <repository_url>
cd BugZooka
python -m venv venv
source venv/bin/activate
# Install dependencies
make installAfter cloning and setting up the virtual environment:
# Install dependencies + development tools
make dev-install
# Set up pre-commit hooks (optional)
pre-commit install
# Run tests
make test
# Run linting and formatting
make lint
make format# Run via Makefile
make run ARGS="--help"
usage: entrypoint.py [-h] [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}] [--enable-inference] [--enable-socket-mode]
BugZooka - Slack Log Analyzer Bot
options:
-h, --help show this help message and exit
--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Logging level (e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL). Can also be set via LOG_LEVEL env var
--enable-inference Enable inference mode. Can also be set via ENABLE_INFERENCE env var (true/false).
--enable-socket-mode Enable Socket Mode for real-time @ mention listening in addition to polling. Can also be set via ENABLE_SOCKET_MODE env var (true/false).BugZooka supports two complementary modes for monitoring Slack channels that can run simultaneously:
-
Polling Mode (Always Active): Periodically fetches new messages from the Slack channel at regular intervals. This mode automatically processes all failure messages posted to the channel.
# Run with polling mode only (default) make run -
Socket Mode (Optional Add-on): Uses WebSocket connections to listen for @ mentions of the bot in real-time. When enabled, this runs in addition to polling mode, allowing users to trigger on-demand analysis by mentioning the bot.
# Run with both polling AND socket mode make run ARGS="--enable-socket-mode"
Socket Mode Requirements:
- An app-level token (
xapp-*) must be configured asSLACK_APP_TOKEN - Socket Mode must be enabled in your Slack app settings
- The bot must have the
app_mentions:readscope
- An app-level token (
When Socket Mode is enabled, users can interact with BugZooka by mentioning the bot in Slack. The bot leverages Gemini with MCP (Model Context Protocol) integration to provide intelligent responses powered by external tools.
BugZooka integrates with the orion-mcp server to analyze GitHub pull request performance and compare it against OpenShift versions. This feature uses Gemini's agentic capabilities with tool calling to orchestrate complex multi-step analysis.
Usage: Mention the bot in Slack with the following format:
@BugZooka analyze pr: https://github.com/org/repo/pull/123, compare with 4.19
For local testing, see Orion-MCP for instructions on how to run orion-mcp.
summarize Nd- Job summary for N number of days.summarize Nd verbose- Job summary for N number of days with more verbosity.
@PerfScale Jedi analyze pr: https://github.com/openshift/ovn-kubernetes/pull/2924, compare with 4.20- Analyses performance of PR w.r.t specified openshift version.
@PerfScale Jedi inspect 4.22.0-0.nightly-2026-01-05-203335- Callshas_nightly_regressedtool in orion-mcp for a given nightly. Default lookback period is 15 days.@PerfScale Jedi inspect 4.22.0-0.nightly-2026-01-05-203335 for N days- Callshas_nightly_regressedtool in orion-mcp for a given nightly for previous N number of days.@PerfScale Jedi inspect 4.22.0-0.nightly-2026-01-05-203335 vs 4.22.0-0.nightly-2026-01-01-123456- Callshas_nightly_regressedtool in orion-mcp and campares two given nightlies.@PerfScale Jedi inspect 4.22.0-0.nightly-2026-01-05-203335 for config trt-external-payload-node-density.yaml- Callshas_nightly_regressedtool in orion-mcp for a given nightly checks regression only for a given orion configuration file instead of the default.
Note: All the triggers that start with a bot mention (.i.e. @PerfScale Jedi) run in socket mode. All socket mode features can be used in any slack channel without needing to host your own on premise openshift deployment.
This tool monitors a slack channel and uses AI to provide replies to CI failure messages. Also it operates as a singleton instance.
All secrets are passed using a .env file which is located in the root directory of this repo. For example
### Mandatory fields
SLACK_BOT_TOKEN="YOUR_SLACK_BOT_TOKEN"
SLACK_CHANNEL_ID="YOUR_SLACK_CHANNEL_ID"
### Optional for Socket Mode (required only when using --enable-socket-mode)
SLACK_APP_TOKEN="YOUR_SLACK_APP_TOKEN" # App-level token (xapp-*) for WebSocket mode
ENABLE_SOCKET_MODE="true" # Set to "true" to enable Socket Mode alongside polling
### Inference API Configuration (required for LLM analysis)
INFERENCE_URL="YOUR_INFERENCE_ENDPOINT" # OpenAI-compatible API endpoint (e.g., Gemini, Llama, DeepSeek)
INFERENCE_TOKEN="YOUR_INFERENCE_TOKEN" # API authentication token
INFERENCE_MODEL="YOUR_INFERENCE_MODEL" # Model name (e.g., "gemini-2.5-pro", "llama-3-2-3b")
### Optional Inference Settings
INFERENCE_VERIFY_SSL="true" # Set to "false" for self-signed certificates
INFERENCE_API_TIMEOUT_SECONDS="120" # Request timeout in seconds (default: 120)
INFERENCE_TOP_P="0.9" # Nucleus sampling (optional, not all APIs support this)
INFERENCE_FREQUENCY_PENALTY="0.0" # Frequency penalty (optional, not all APIs support this)
### Retry Configuration (optional)
INFERENCE_API_RETRY_MAX_ATTEMPTS="3" # Max retry attempts (default: 3)
INFERENCE_API_RETRY_DELAY="5.0" # Initial retry delay in seconds (default: 5.0)
INFERENCE_API_RETRY_BACKOFF_MULTIPLIER="2.0" # Exponential backoff multiplier (default: 2.0)
INFERENCE_API_RETRY_MAX_DELAY="60.0" # Max retry delay in seconds (default: 60.0)
Note: The inference client works with any OpenAI-compatible API endpoint. Make sure to provide the mandatory Slack and inference configuration.
Along with secrets, prompts are configurable using a prompt.json in the root directory. If not specified, the default prompt from bugzooka/analysis/prompts.py will be used. Example prompt.json content:
{
"PROMPT": {
"system": "You are an expert in OpenShift, Kubernetes, and cloud infrastructure...",
"user": "Here is the log summary:\n\n{error_summary}\n\nAnalyze the issue and provide...",
"assistant": "**Affected Component:** <Identified component>..."
}
}The {error_summary} placeholder in the user prompt will be replaced with the actual log content.
-
What it does:
- Scans channel history within the specified lookback window
- Counts total jobs and failures, groups failures by type
- Optionally breaks down by OpenShift version and includes representative messages
-
How to run:
- Ensure BugZooka is running
- In Slack:
summarize 20msummarize 7d verbose
-
Behavior:
- All summary output is threaded under that parent to avoid channel noise
- Large sections are chunked to fit Slack limits
-
Notes:
- Only CI job notifications that clearly indicate a failure are included
- No persistent state; summaries read from channel history at request time
BugZooka can optionally enrich its βImplications to understandβ output with Retrieval-Augmented Generation (RAG) context when a local vector store is available.
-
What it does:
- Detects RAG data under
RAG_DB_PATH(default:/rag). - Retrieves top-k relevant chunks via the local FAISS index.
- Uses
RAG_AWARE_PROMPTto ask the inference API for context-aware insights. - Appends a βRAG-Informed Insightsβ section beneath the standard implications.
- Detects RAG data under
-
Enable via deployment overlay:
- Build your BYOK RAG image following the BYOK tooling HOWTO and set it as
RAG_IMAGEin your.env: - Run
make deploy. The Makefile will apply the RAG overlay and mount a shared volume at/rag. - Note: The BYOK image is intended to be used as an initContainer to prepare the vector store. In this repository, the provided overlay runs it as a sidecar; both patterns are supported for preparing/serving
/rag. - For local testing without a cluster, place your RAG content under
/rag; BugZooka will auto-detect it.
- Build your BYOK RAG image following the BYOK tooling HOWTO and set it as
-
Behavior and fallback:
- If no RAG artifacts are detected, analysis proceeds unchanged.
-
Files of interest:
bugzooka/integrations/rag_client_util.py: retrieves top-k chunks from FAISSbugzooka/analysis/prompts.py:RAG_AWARE_PROMPTbugzooka/integrations/slack_fetcher.py: integrates RAG into implications when availablekustomize/overlays/rag/*: RAG sidecar overlay and volume wiring
BugZooka can operate in chatbot mode using Slack Socket Mode for real-time event listening via WebSockets. In this mode, the bot responds to @mentions in real-time on top of polling for messages.
-
What it does:
- Establishes a persistent WebSocket connection to Slack using Socket Mode.
- Listens for @mentions of the bot in the configured channel.
- Processes mentions asynchronously using a thread pool for concurrent handling.
- Supports interactive PR analysis when mentioned with
analyze pr: <GitHub PR URL>. - Provides instant visual feedback (π reaction) when processing mentions.
-
Enable via deployment overlay:
- Set
CHATBOT=trueenv var. - Run
make deploy. The Makefile will apply the chatbot overlay which setsENABLE_SOCKET_MODE=true. - Alternatively, set
ENABLE_SOCKET_MODE=truedirectly in your environment.
- Set
-
Required environment variables:
SLACK_APP_TOKEN: Slack App-Level Token (starts withxapp-) for Socket Mode authentication.SLACK_BOT_TOKEN: Standard bot token for posting messages.SLACK_CHANNEL_ID: Channel ID to monitor for mentions.
-
Behavior:
- When mentioned with
analyze pr: <PR URL>, compare with <version>, performs AI-powered PR performance analysis. - For other mentions, responds with a friendly greeting and usage tips.
- Handles concurrent mentions using a configurable thread pool (default: 5 workers).
- Gracefully shuts down on SIGINT/SIGTERM, waiting for pending tasks to complete.
- When mentioned with
-
Files of interest:
bugzooka/integrations/slack_socket_listener.py: Socket Mode client implementationbugzooka/integrations/slack_client_base.py: Base class for Slack clientsbugzooka/analysis/pr_analyzer.py: PR performance analysis with Gemini+MCPkustomize/overlays/chatbot/*: Chatbot mode overlay configuration
MCP servers can be integrated by adding a simple configuration in mcp_config.json file in the root directory.
Note: MCP tools are automatically loaded and made available to the LLM for tool calling when configured.
MCP servers support multiple transport types (stdio, sse, streamable_http). BugZooka includes a production integration with orion-mcp for PR performance analysis (see Bot Mentions and PR Performance Analysis section).
Below are example configurations for different transport types:
{
"mcp_servers": {
"github_docker_stdio": {
"transport": "stdio",
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "GITHUB_PERSONAL_ACCESS_TOKEN=YOUR_PERSONAL_TOKEN",
"ghcr.io/github/github-mcp-server"
]
},
"remote_weather_api": {
"transport": "streamable_http",
"url": "https://api.example.com/mcp-tools/v1",
"headers": {
"Authorization": "Bearer remote_api_token"
}
},
"realtime_metrics_sse": {
"transport": "sse",
"url": "http://localhost:9001/events",
"reconnect": {
"enabled": true,
"maxAttempts": 5,
"delayMs": 1000
}
}
}
}Note: By just adding MCP servers, BugZooka will have access to tools but they might not be called with appropriate formal parameters. In order for that to work as expected, your own implementation of tool calls is recommended.
# Build image using Podman
podman build -f Dockerfile -t quay.io/YOUR_REPO/bugzooka:latest .
# Push to registry
podman push quay.io/YOUR_REPO/bugzooka:latest
# Run as a container (with both polling and socket mode)
podman run -d \
-e ENABLE_INFERENCE=true \
-e ENABLE_SOCKET_MODE=true \
-v /path-to/prompt.json:/app/prompt.json:Z \
-v /path-to/.env:/app/.env:Z \
quay.io/YOUR_REPO/bugzooka:latest
# Alternatively use Make commands
make podman-build
make podman-run # Requires .env file in project rootBugZooka has a dependency on orion-mcp service which is expected to be deployed in orion-mcp namespace.
# Expose your ENVs and deploy resources
export QUAY_CRED='<base64 encoded pull secret>'
export BUGZOOKA_IMAGE='<bugzooka image tag>'
export BUGZOOKA_NAMESPACE='<your namespace>'
make deploy
# Cleanup resources
kustomize build ./kustomize | envsubst | oc delete -f -There are several optional envvars for special deployments, set them before running make deploy:
# Deploy with BYOK RAG and Slack mentions support
export RAG_IMAGE='<byok rag image tag>'
# Deploy with Slack mentions support
export CHATBOT=trueBugZooka/
βββ assets/
β βββ flow_diagram.jpg # High-level architecture diagram
βββ bugzooka/
β βββ __init__.py
β βββ entrypoint.py # Main orchestrator
β βββ core/ # Core application functionality
β β βββ __init__.py
β β βββ config.py # Configuration management
β β βββ constants.py # Application constants
β β βββ utils.py # Shared utility functions
β βββ integrations/ # External service integrations
β β βββ __init__.py
β β βββ inference_client.py # Unified inference client (OpenAI-compatible)
β β βββ mcp_client.py # MCP protocol client implementation
β β βββ rag_client_util.py # RAG vector store utilities
β β βββ slack_client_base.py # Base class for Slack clients
β β βββ slack_fetcher.py # Slack polling integration
β β βββ slack_socket_listener.py # Slack Socket Mode (WebSocket) integration
β βββ analysis/ # Log analysis and processing
β βββ __init__.py
β βββ failure_keywords.py # Failure pattern detection
β βββ jsonparser.py # JSON parsing utilities
β βββ log_analyzer.py # Main log analysis orchestration
β βββ log_summarizer.py # Log summarization functionality
β βββ pr_analyzer.py # PR performance analysis with Gemini+MCP
β βββ prompts.py # AI prompts and templates
β βββ prow_analyzer.py # Prow-specific CI/CD analysis
β βββ xmlparser.py # XML parsing for test results
βββ kustomize/ # Kubernetes deployment manifests
β βββ base/
β β βββ configmap-mcp-config.yaml # MCP configuration
β β βββ configmap-prompts.yaml # Prompts configuration
β β βββ deployment.yaml # Main BugZooka deployment
β β βββ imagestream.yaml
β β βββ kustomization.yaml
β β βββ namespace.yaml
β β βββ secret-quay.yaml
β β βββ serviceaccount-patch.yaml
β βββ overlays/
β βββ chatbot/ # Chatbot mode deployment overlay
β β βββ env-patch.yaml
β β βββ kustomization.yaml
β βββ rag/ # RAG-enabled deployment overlay
β βββ kustomization.yaml
β βββ sidecar-patch.yaml
βββ tests/ # Test suite
β βββ __init__.py
β βββ conftest.py # Pytest configuration
β βββ helpers.py # Test utilities
β βββ test_slack_fetcher.py # Slack fetcher tests
β βββ test_slack_socket_listener.py # Socket mode tests
βββ Dockerfile # Container image definition
βββ Makefile # Build and deployment automation
βββ requirements.txt # Python dependencies
βββ pytest.ini # Pytest configuration
βββ prompt.json # LLM prompt configuration
βββ mcp_config.json # MCP servers configuration
βββ test_orion_mcp.py # orion-mcp integration test
βββ LICENSE
βββ OWNERS
βββ README.md # This file
This project uses the following tooling for code quality:
- Black: Code formatting
- Ruff: Fast Python linter (replaces flake8, isort, etc.)
- MyPy: Static type checking
- Pre-commit: Git hooks for code quality (optional)
- Pytest: Testing framework
